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Summary

1. Seismic data

Reflectivity c
Seismic wavelet w
Observational noise e
Seismic data d

2. Model

1D convolutional model:

dj = cj ⋆ w + ej for column j .

Probabilistic model:

Gaussian reflectivity prior.

Gaussian wavelet prior.

Gaussian likelihood.

Inverse-Gamma variances.

3. Scalability

0 no
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0 no
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4. Estimation

Sample posterior distribution

p(c ,w , σ2
c , σ

2
w , σ

2
d | d )

with Markov chain Monte Carlo (MCMC).
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Seismic data acquisition and processing

(a) Data acquisition.

Well

(b) Seismic data D
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(c) Well log data
cwell.
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Model assumptions

1D convolutional model for column j :

dj = w ⋆ cj + ej , j = 1, ...,m

Denote the data, reflectivity,
and noise for all columns on
the image by D, C , and E .

Denote their vectorized
versions as d = vec(D),
c = vec(C), and e = vec(E).

The 1D convolutional model
for the n ×m image is

d = Wc + e.

Assumptions:

Same wavelet acts on each
column.

Stationary C and E .



Introduction Methodology Results Conclusions

Model assumptions

1D convolutional model for column j :

dj = w ⋆ cj + ej , j = 1, ...,m

Denote the data, reflectivity,
and noise for all columns on
the image by D, C , and E .

Denote their vectorized
versions as d = vec(D),
c = vec(C), and e = vec(E).

The 1D convolutional model
for the n ×m image is

d = Wc + e.

Assumptions:

Same wavelet acts on each
column.

Stationary C and E .



Introduction Methodology Results Conclusions

Model assumptions

1D convolutional model for column j :

dj = w ⋆ cj + ej , j = 1, ...,m

Denote the data, reflectivity,
and noise for all columns on
the image by D, C , and E .

Denote their vectorized
versions as d = vec(D),
c = vec(C), and e = vec(E).

The 1D convolutional model
for the n ×m image is

d = Wc + e.

Assumptions:

Same wavelet acts on each
column.

Stationary C and E .



Introduction Methodology Results Conclusions

Model assumptions

1D convolutional model for column j :

dj = w ⋆ cj + ej , j = 1, ...,m

Denote the data, reflectivity,
and noise for all columns on
the image by D, C , and E .

Denote their vectorized
versions as d = vec(D),
c = vec(C), and e = vec(E).

The 1D convolutional model
for the n ×m image is

d = Wc + e.

Assumptions:

Same wavelet acts on each
column.

Stationary C and E .



Introduction Methodology Results Conclusions

Model assumptions

1D convolutional model for column j :

dj = w ⋆ cj + ej , j = 1, ...,m

Denote the data, reflectivity,
and noise for all columns on
the image by D, C , and E .

Denote their vectorized
versions as d = vec(D),
c = vec(C), and e = vec(E).

The 1D convolutional model
for the n ×m image is

d = Wc + e.

Assumptions:

Same wavelet acts on each
column.

Stationary C and E .



Introduction Methodology Results Conclusions

The probabilistic model (1)

Represent the wavelet in the time domain as the sequence with k elements

w = {w1, . . . ,wk}.

Define the 2 × k constraint matrix Aw that forces the endpoints of w to be zero.
Model the constrained sequence as a Gaussian process:

w |σ2
w ∼ Nk(0, σ2

wRw ), w⋆ = w |Aww = 0, → w⋆|σ2
w ∼ Nk(0, σ2

wR⋆
w )
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Similarly, model the constrained reflectivity vector as a Gaussian field:

c |σ2
c ∼ Nnm(0, σ2

cRc), c⋆ = c |Acc = cwell → c⋆|σ2
c ∼ Nnm(µ

⋆
c , σ

2
cR

⋆
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The probabilistic model (2)

Assume Gaussian observational noise and obtain the Gaussian likelihood

d |c ,w , σ2
c , σ

2
w , ζ ∼ Nnm(Wc , σ2

dRd), σ2
d ∝ σ2

cσ
2
wζ, ζ−1 = SNR

Model the spatial correlations as the product of the correlations in each
direction (separability):

Rd = Rd,h ⊗ Rd,v , Rc = Rc,h ⊗ Rc,v .

Assign inverse-Gamma hyperpriors to the marginal variance parameters

σ2
c ∼ IG(αc , βc)

σ2
w ∼ IG(αw , βw )

ζ ∼ IG(αζ , βζ)

ζ σ2
wσ2

c

c⋆ w⋆

d

The stochastic model
represented by a DAG.
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Posterior distribution of the model

Denote: data y = (d , cwell) and unknown parameters θ = (w⋆, c⋆, σ2
w , σ

2
c , ζ).

Use Bayes’ rule

p(θ|y) = p(θ, y)
p(y)

∝ p(y ,θ)

to find the joint distribution

p(c⋆,w⋆, σ2
c , σ

2
w , ζ|d ) = p(d |c⋆,w⋆, σ2

c , σ
2
w , ζ)p(c

⋆|σ2
c )p(w

⋆|σ2
w )p(σ

2
c )p(σ

2
w )p(ζ).

Conjugate distributions in the model (Gaussian-Gaussian and Gaussian-inverse-Gamma) let us write a Gibbs
sampler.



Introduction Methodology Results Conclusions

Posterior distribution of the model

Denote: data y = (d , cwell) and unknown parameters θ = (w⋆, c⋆, σ2
w , σ

2
c , ζ).

Use Bayes’ rule

p(θ|y) = p(θ, y)
p(y)

∝ p(y ,θ)

to find the joint distribution

p(c⋆,w⋆, σ2
c , σ

2
w , ζ|d ) = p(d |c⋆,w⋆, σ2

c , σ
2
w , ζ)p(c

⋆|σ2
c )p(w

⋆|σ2
w )p(σ

2
c )p(σ

2
w )p(ζ).

Conjugate distributions in the model (Gaussian-Gaussian and Gaussian-inverse-Gamma) let us write a Gibbs
sampler.



Introduction Methodology Results Conclusions

Posterior distribution of the model

Denote: data y = (d , cwell) and unknown parameters θ = (w⋆, c⋆, σ2
w , σ

2
c , ζ).

Use Bayes’ rule

p(θ|y) = p(θ, y)
p(y)

∝ p(y ,θ)

to find the joint distribution

p(c⋆,w⋆, σ2
c , σ

2
w , ζ|d ) = p(d |c⋆,w⋆, σ2

c , σ
2
w , ζ)p(c

⋆|σ2
c )p(w

⋆|σ2
w )p(σ

2
c )p(σ

2
w )p(ζ).

Conjugate distributions in the model (Gaussian-Gaussian and Gaussian-inverse-Gamma) let us write a Gibbs
sampler.



Introduction Methodology Results Conclusions

Gibbs sampler for joint reflectivity and wavelet estimation

Algorithm Gibbs sampler

Input: Seismic data d , well log cwell, priors, initial values
Output: Samples from posterior p(c∗,w∗, σ2

c , σ
2
w , ζ | d )

Initialize c (0),w (0), (σ2
c )

(0), (σ2
w )

(0), ζ(0)

for t = 1, 2, . . . ,T do
Update reflectivity: Sample c (t) ∼ p(c∗ | w (t−1), (σ2

c )
(t−1), (σ2

w )
(t−1), ζ(t−1), d )

Update wavelet: Sample w (t) ∼ p(w∗ | c (t), (σ2
c )

(t−1), (σ2
w )

(t−1), ζ(t−1), d )
Update reflectivity variance: Sample (σ2

c )
(t) ∼ p(σ2

c | c (t),w (t), (σ2
w )

(t−1), ζ(t−1), d )
Update wavelet variance: Sample (σ2

w )
(t) ∼ p(σ2

w | c (t),w (t), (σ2
c )

(t), ζ(t−1), d )
Update SNR: Sample ζ(t) ∼ p(ζ | c (t),w (t), (σ2

c )
(t), (σ2

w )
(t), d )

Return: {c (t),w (t), (σ2
c )

(t), (σ2
w )

(t), ζ(t)}Tt=B+1 after burn-in B

The problem is that the full conditionals p(θj |θ−j , d ) involve operations with computational complexity O(l3),
l = nm.
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A possible solution

Matrix multiplication, inversion, and decomposition for arbitrary ss matrices scale ∼ cubic with s.

For matrices with special structures we have efficient multiplication/inversion algorithms.

For example, take the circulant matrix

R = circ(r) =


r0 r1 r2 · · · rs−1

rs−1 r0 r1 · · · rs−2

rs−2 rs−1 r0 · · · rs−3
...

...
...

. . .
...

r1 r2 r3 · · · r0

 , r = (r0, · · · , rs−1)
T .

We can represent it by its base r .
We can find its eigenvalues with the DFT in O(s log(s)).
Multiplication/inversion/decomposition are eigenvalue-based operations.

Can we make our correlation matrices circulant?



Introduction Methodology Results Conclusions

A possible solution

Matrix multiplication, inversion, and decomposition for arbitrary ss matrices scale ∼ cubic with s.

For matrices with special structures we have efficient multiplication/inversion algorithms.

For example, take the circulant matrix

R = circ(r) =


r0 r1 r2 · · · rs−1

rs−1 r0 r1 · · · rs−2

rs−2 rs−1 r0 · · · rs−3
...

...
...

. . .
...

r1 r2 r3 · · · r0

 , r = (r0, · · · , rs−1)
T .

We can represent it by its base r .
We can find its eigenvalues with the DFT in O(s log(s)).
Multiplication/inversion/decomposition are eigenvalue-based operations.

Can we make our correlation matrices circulant?



Introduction Methodology Results Conclusions

A possible solution

Matrix multiplication, inversion, and decomposition for arbitrary ss matrices scale ∼ cubic with s.

For matrices with special structures we have efficient multiplication/inversion algorithms.

For example, take the circulant matrix

R = circ(r) =


r0 r1 r2 · · · rs−1

rs−1 r0 r1 · · · rs−2

rs−2 rs−1 r0 · · · rs−3
...

...
...

. . .
...

r1 r2 r3 · · · r0

 , r = (r0, · · · , rs−1)
T .

We can represent it by its base r .
We can find its eigenvalues with the DFT in O(s log(s)).
Multiplication/inversion/decomposition are eigenvalue-based operations.

Can we make our correlation matrices circulant?



Introduction Methodology Results Conclusions

A possible solution

Matrix multiplication, inversion, and decomposition for arbitrary ss matrices scale ∼ cubic with s.

For matrices with special structures we have efficient multiplication/inversion algorithms.

For example, take the circulant matrix

R = circ(r) =


r0 r1 r2 · · · rs−1

rs−1 r0 r1 · · · rs−2

rs−2 rs−1 r0 · · · rs−3
...

...
...

. . .
...

r1 r2 r3 · · · r0

 , r = (r0, · · · , rs−1)
T .

We can represent it by its base r .
We can find its eigenvalues with the DFT in O(s log(s)).
Multiplication/inversion/decomposition are eigenvalue-based operations.

Can we make our correlation matrices circulant?



Introduction Methodology Results Conclusions

A possible solution

Matrix multiplication, inversion, and decomposition for arbitrary ss matrices scale ∼ cubic with s.

For matrices with special structures we have efficient multiplication/inversion algorithms.

For example, take the circulant matrix

R = circ(r) =


r0 r1 r2 · · · rs−1

rs−1 r0 r1 · · · rs−2

rs−2 rs−1 r0 · · · rs−3
...

...
...

. . .
...

r1 r2 r3 · · · r0

 , r = (r0, · · · , rs−1)
T .

We can represent it by its base r .
We can find its eigenvalues with the DFT in O(s log(s)).
Multiplication/inversion/decomposition are eigenvalue-based operations.

Can we make our correlation matrices circulant?



Introduction Methodology Results Conclusions

A possible solution

Matrix multiplication, inversion, and decomposition for arbitrary ss matrices scale ∼ cubic with s.

For matrices with special structures we have efficient multiplication/inversion algorithms.

For example, take the circulant matrix

R = circ(r) =


r0 r1 r2 · · · rs−1

rs−1 r0 r1 · · · rs−2

rs−2 rs−1 r0 · · · rs−3
...

...
...

. . .
...

r1 r2 r3 · · · r0

 , r = (r0, · · · , rs−1)
T .

We can represent it by its base r .
We can find its eigenvalues with the DFT in O(s log(s)).
Multiplication/inversion/decomposition are eigenvalue-based operations.

Can we make our correlation matrices circulant?



Introduction Methodology Results Conclusions

A possible solution

Matrix multiplication, inversion, and decomposition for arbitrary ss matrices scale ∼ cubic with s.

For matrices with special structures we have efficient multiplication/inversion algorithms.

For example, take the circulant matrix

R = circ(r) =


r0 r1 r2 · · · rs−1

rs−1 r0 r1 · · · rs−2

rs−2 rs−1 r0 · · · rs−3
...

...
...

. . .
...

r1 r2 r3 · · · r0

 , r = (r0, · · · , rs−1)
T .

We can represent it by its base r .
We can find its eigenvalues with the DFT in O(s log(s)).
Multiplication/inversion/decomposition are eigenvalue-based operations.

Can we make our correlation matrices circulant?



Introduction Methodology Results Conclusions

Scalability

n N

m

M

(a) The extended lattice. (b) The cyclic lattice.

Separability on the cyclic lattice gives circulant or block-circulant with circulant blocks correlation matrices:

Rw,v , R
c
= Rc,h ⊗ Rc,v , R

d
= Rd,h ⊗ Rd,v ,

Convolutional matrix W is BCCB.
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Gibbs sampling on the cyclic lattice

Algorithm Gibbs sampler on the cyclic lattice

Input: · · ·
Output: Samples from posterior p(c∗,w∗, σ2

c , σ
2
w , ζ, daux | d )

Initialize · · ·
for t = 1, 2, . . . ,T do

Update reflectivity
Update wavelet
Update reflectivity variance
Update wavelet variance
Update SNR
Update auxiliary seismic data daux

Return: {c (t),w (t), (σ2
c )

(t), (σ2
w )

(t), ζ(t), d (t)
aux}Tt=B+1 after burn-in B

Some advantages:
Store only bases of R ·,h, R ·,v , R

·
Use DFT to compute full conditional parameters and sample from Gaussians in O(S log(S)), S = NM.



Introduction Methodology Results Conclusions

Real application: Gas reservoir in offshore Egypt

We extract a 330 × 50s window from the AVO
data for a fixed inline, centered around the well.
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Wavelet posterior exploration
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(c) Sample autocorrelation

MCMC sampling results for wavelet posterior distribution.

Question: Can we sample more efficiently from the same posterior distribution?
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Marginal seismic wavelet estimation with Hamiltonian Monte Carlo

The joint reflectivity and wavelet estimation is mathematically equivalent to sampling from the joint
p(w⋆, c⋆|d , σ2

c , σ
2
c , ζ).

We instead want a marginal wavelet estimation, i.e. to sample from p(w⋆|d , σ2
c , σ

2
c , ζ).

This new marginal posterior looks like

p(w⋆|d , σ2
c , σ

2
w , ζ, daux) ∝ p(w⋆|σ2

w )p(d |w⋆, σ2
c , σ

2
w , ζ, daux),

with
p(d |w⋆, σ2

c , σ
2
w , ζ, daux) =

∫
p(d , c⋆|w⋆, σ2

c , σ
2
w , ζ)dc⋆ (1)

This integral can be done analytically.

Using HMC might be better because it’s a gradient-based algorithm.

Evaluating gradients and densities at each iteration is O(s1.5) on the cyclic lattice.
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Conclusions

We proposed an approach for estimating a seismic wavelet with full UQ.

Gibbs sampler allows joint wavelet and reflectivity estimation but is slow.

Collapsed HMC allows efficient marginal wavelet estimation.
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